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1. INTRODUCTION

The methods by which climate data are being
collected and used are expanding rapidly. Increasingly,
data are being collected by automated electronic
systems, with a wider variety of platforms, at higher
temporal resolution, at more locations, and in more
difficult and remote environments. Automated climate
observations at various time steps are being
disseminated over near-real time communication
networks, for use by a variety of software applications,
to fill a wider range of needs, in an increasingly
automated and digital world. The development of the
ASOS (Automated Surface Observing System),
SNOTEL (Snowpack Telemetry), RAWS (Remote
Automated Weather Station), Agrimet, innumerable
mesonets, and the prospect of COOP modernization, all
reflect an increased reliance on electronic sensors, data
from remote environments, and automated, real-time
data delivery systems.

This shift in observational strategy is largely the
result of technological advances in areas such as
electronics, communications, and computing, that have
increased both the supply of, as well as demand for,
climate data. Some of these same technological
advances now provide opportunities for qualitatively
different approaches to quality control, methods that are
sophisticated, largely automated, data-rich, updatable,
and capable of furnishing quantitative error and
confidence information. Such methods were infeasible
to implement and operate just a few years ago. This
paper explores some of the characteristics of such
methods, and discusses why they are both beneficial
and practical. The characteristics discussed here are
summarizes as follows:

e Data-rich QC frameworks (cross-network
comparisons, variety of data sources)

e Continuous, quantitative estimates of observation
validity and uncertainty in estimation

e Transparent dissemination of results that allow end-
user interaction, education, and decision-making

e Automated QC systems that can improve through
experience and feedback, and are applied
retrospectively at regular intervals.

The ultimate goal is a QC approach that is self-
consistent and physically plausible, in accord with
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known principles of how the atmosphere works, and that
can be updated to reflect changes in our knowledge
base.

The first generation of a spatial QC system recently
developed for USDA Natural Resources Conservation
Service (NRCS) SNOTEL temperature data is
presented as an example of a QC system that is in the
early stages of incorporating these characteristics.
While this one example does not adequately represent
the current state of the science pertaining to all the
characteristics listed, it does provide a useful
perspective on the needs and requirements of a QC
system operating in today’s environment The focus of
the examples in this paper is primarily on daily totals
and extremes (max/min temperature and precipitation),
but the ideas discussed should be applicable to other
time scales.

1.1. Data-rich QC Frameworks

Automated data collection systems, by definition, do
not require a constant human presence, and many
operate without AC power. Thus, the number and
variety of potential locations is quite large, and these
systems are often used to monitor difficult and extreme
(e.g., mountains, wilderness, marine) environments far
from permanent human habitation. Intelligently
assessing the quality of the data collected in such
environments is difficult, and requires a sophisticated,
data-rich QC system that can account for factors
controlling the spatial and temporal patterns of climate
in the area. Simple, data-sparse QC systems
sometimes rate observations taken in remote areas as
poor, not because the data are actually poor, but
because data values may be at the edges of the
“typical” range, and the data may not seem to be directly
consistent with other observations in the regions.

Data that could be used to improve a QC system are
numerous and varied. Four types are discussed here:
(1) in situ observations; (2) satellite and radar data; (3)
diagnostic grids interpolated from observations; and (4)
values and QC results from other observed elements.
There are many national surface station networks
available in the US, including SNOTEL, COOP, ASOS,
and RAWS. Also valuable to the QC effort, especially at
high elevations, are upper-air observations taken by the
National Weather Service. Data from various mesonets
and other sources could improve the quality of
estimates through increased initialization and
verification density, especially in previously data-sparse
areas. However, there is a balance that must be struck
between inclusion of additional data sources, and the
quality of the added data. Additional poor-quality data
can increase, rather than decrease, uncertainties in the
QC system.



Non-station data sources include satellite radiances,
snow cover, and infrared skin temperature; and radar
precipitation estimates. All have serious limitations, and
are useful only under certain conditions. Precipitation
estimation from satellite and radar is very difficult in
complex terrain, where snow dominates on an annual
basis, winter clouds are shallow, bright bands are
present, and sub-cloud air is very dry, so may be of
limited usefulness for quality controlling networks such
as SNOTEL. Infrared skin temperature and snow cover
estimation suffer from cloud interference nationwide,
resulting in intermittent spatial and temporal coverage.

However, if used carefully and restricted to the
appropriate regions and seasons, these kinds of data
can provide wuseful independent evaluation of
observations. During the winter season, there can be
severe undercatch of precipitation from surface
networks using unshielded tipping bucket gauges (such
as the current ASOS system), in some cases rendering
these observations useless. The National Centers for
Environmental Prediction (NCEP) are currently creating
Stage IV precipitation estimates using a combination of
surface and radar based data. The radar-based
precipitation estimates could be used to detect
suspicious surface based observations showing little or
no precipitation. However, radar data also suffer from
snow underestimation due to typically poor radar returns
from snowfall or inability to see shallow winter clouds.
Radar can be more helpful in summer, with tall
convection not as susceptible to terrain blocking, to
establish precipitation presence/absence.

The National Climate Data Center (NCDC) is taking
a multi-sensor approach to the real-time QC of
precipitation data in their PrecipVal system (Urzen et al.
2004). Data layers used (when available) are station
data, radar, and satellite data, and rapid update cycle
(RUC) model output. Observation confidence is
generally based on the number of independent data
layers agreeing with the observation. There is much
work to be done to quantitatively determine, given the
location and weather situation, uncertainties in each of
these independent data layers. Here again, adding
poor-quality data can increase, rather than decrease,
uncertainties in the QC system.

As will be discussed in the presentation of the
SNOTEL QC system in Section 2, higher interpolation
skill is often obtained by employing in the interpolation
process a predictive grid that represents long-term
climatological patterns for that day or month. The only
grids commonly available for this purpose represent
thirty-year means. This may be problematic on days
when the spatial patterns deviate significantly from the
mean. A more robust solution would be to use spatial
climatologies that are targeted to the conditions at hand.
A useful first step for temperature would be to construct
two sets of monthly climatologies: one for clear, dry,
stable conditions, and one for moist, well-mixed storm
conditions. These would account for many of the day-
to-day differences in temperature patterns, and thus
improve the QC estimates. Precipitation patterns are
more varied and not as easily defined. Oregon State
University’s Spatial Climate Analysis Service (SCAS) is

currently working with the National Weather Service
Western Region’s River Forecast Centers to define and
create gridded precipitation climatologies that are
targeted to specific storm conditions of interest to flood
forecasting. However, these climatologies are not easily
generalized over large areas.

For QC systems having access to multiple climate
elements, there is the opportunity to create relationships
between the values and QC results of these other
elements. Obvious inconsistencies between variables
can be easily checked (e.g., ensure that maximum
temperature is greater than minimum temperature).
Beyond these simple checks, it is possible to develop
joint QC results that feed on the values of several
elements, and thus strengthen the overall results.
Values of other elements, such as precipitation, are also
useful in determining the targeted temperature
climatologies discussed in the previous paragraph.

1.2. Continuous, quantitative estimates of
observation validity and estimation uncertainty

Traditional QC methods for surface observations
have employed a series of categorical quality checks
that an observation must pass if it is to be considered
valid. The outcomes of these checks are typically of a
“yes” or “no” nature, and the observation is flagged with
notations based on these outcomes. For example, the
NOAA Forecast Systems Lab is operating a near real-
time Meteorological Assimilation Data Ingest System
(MADIS) for providing quality controlled surface
observations. Flags are available for each observation
based on different levels of quality, such as: 1) validity
check of data range; 2) internal consistency between
various elements; 3) spatial or temporal consistency;
and 4) subjective override of automated checks. For
some elements, such as precipitation, only temporal
flags are present.

There is much benefit in estimates of observational
validity and estimation uncertainty that are quantitative
and continuous, rather than categorical. Needs for
quantitative and continuous estimates stem from two
main sources: (1) errors from electronic measurement
systems can suffer from drift (i.e., calibration issues) as
well categorical mistakes (e.g., using an incorrect
algorithm to convert voltage to temperature); and (2)
computer models (e.g., hydrologic models) that rely on
climate observations as input benefit from quantitative
estimates of uncertainty.  Providing such quantitative
uncertainties requires that the statistical performance of
a QC system be known, and incorporated into the
results (see Section 1.4).

1.3. Transparent dissemination of results

The range of applications for climate data is rapidly
increasing, and each application has a different
tolerance for low-confidence data points. One user’s
unusual observation may be just what another user is
looking for. Unfortunately, there is often very little
information available to users about how QC systems
arrived at their conclusions, (e.g., assumptions made,



uncertainties in the QC results, thresholds for data
inclusion, etc.), making it difficult to make educated
choices about how the data should be used and
interpreted for a particular application.

We suggest a new approach, where full quantitative
QC results are presented to the user in a transparent,
interactive format. Full disclosure allows users to make
alternate decisions about the QC results and an
interactive system allows users to generate their own
data sets, based on suggested default thresholds for
data inclusion, or their own thresholds. This approach
implies that there is no single data set that everyone
must use. However, there will always be a need for an
“official” QC’ed data set for the majority of users who do
not choose to deviate from the suggested guidelines.
This kind of product can and should be provided, so
long as the process and assumptions used in creating
the data set are documented in an easily
understandable way, and accessible to any interested
user.

1.4. Automated QC systems that are regularly
improved and re-applied retrospectively

Data generated by automated electronic systems
are often more voluminous (e.g., shorter time step, or
higher temporal resolution) and disseminated in a much
more timely manner than those from manual systems.
Historical climate data archives are growing rapidly,
requiring historical QC systems to handle large amounts
of data. Whether operating on near-real time data,
historical data, or both, largely automated QC
approaches are required.

In order for QC systems to be optimally effective,
climate data QC must be designed as an ongoing
process of application and improvement of the system,
not a one-time decree of data validity. Traditionally, a
QC’ed data set has been thought of by users as one
that has been “cleaned up,” and that no “bad” values
remain. This implies that there is a central authority that
knows good data from bad, and that QC is just a matter
of subjecting the data to this authority and getting a
thumbs up or thumbs down. This kind of misleading and
oversimplified perception places an unreasonable
burden on the QC system to judge a data point usable
or unusable for everyone and for all time. In treating
data QC as process, the expectation will be that QC
systems can and will be improved, and will be re-applied
retrospectively on a periodic basis to reflect these
improvements.

The first step in improving the system is to evaluate
its current performance. QC systems should not be
evaluated based on how many data values they find to
be bad. As discussed earlier, good data are often
flagged as bad by data-poor QC systems, because they
are unable to account for the factors that produce
spatial or temporal differences in climate data.

One effective way to determine the skill of a QC
system is to go back to basics, and assess its ability to
estimate for stations whose observations are known
with reasonable confidence. One could argue that most
stations maintained by national networks such as NWS

COOP fall into this category, because the observational
errors associated with these stations are probably much
smaller than the estimation errors of a QC system.
Unlike climate interpolation, where the actual field is
unknown and evaluation must be done indirectly, we
know what was observed at each station, which allows
direct comparisons between observations and
estimates. If the system can’t estimate the observations
well, then it will have little skill in determining data
validity.

Because there are a seemingly infinite humber and
variety of individual situations a QC system must handle
well, overall performance statistics only tell part of the
story. Classifying performance statistics into weather
types as discussed in Section 1.2 may give specific
information on when and where the QC system needs
improvement.

Equally important input into the evaluation process
comes from manual spot check evaluations, in which
the decisions of the QC system are compared with
those of human decision makers. This requires much
time and effort over a long period, usually coming in the
form of feedback from users and developers as the QC
system is in operation. A key part of the feedback from
human evaluation, especially when the QC system
appears to be making erroneous assessments, is to
identify what information the person accessed, and how
it was processed, to make this determination. Finding
ways to include this information in the QC system’s
repertoire of data sets and algorithms is a major part of
the improvement process.

In the end, the fundamental dilemma with nearly all
quality control is a tension between the relative merits
and costs of accidentally rejecting good data, or
accidentally accepting bad data. A tradeoff is usually
involved.

2. EXAMPLE:
DATA

QUALITY CONTROL OF SNOTEL

2.1. Background

In the mid and late 1990s, the SCAS developed new
precipitation maps for the United States (USDA-NRCS,
1998; Daly and Johnson, 1999). SNOTEL was the
primary high-elevation network used for the mapping
and proved to be essential for map development. In
addition to precipitation data, the more than 700
SNOTEL stations report temperature and snow water
equivalent. SNOTEL data are recorded electronically
and transmitted to data collection centers. The stations
are in remote areas with limited winter access, and thus
must operate unattended for long periods of time in
difficult weather conditions. The data have never
undergone complete spatial quality assurance and
quality control corrections. Work within the USDA-NRCS
and the Western Regional Climate Center had
attempted to accomplish this, but was never fully
completed.

In 2002 the NRCS asked the SCAS to develop a
formal QC system for their SNOTEL data products,
based upon SCAS spatial QC tools. The system was to



be used to QC historical daily data over the SNOTEL
period of record (beginning in about 1980), and
subsequently installed and operated at NRCS to QC
daily data in near real-time. The project was to address
temperature first, then move to precipitation and snow
water equivalent. The resulting, first-generation
SNOTEL QC system for temperature, termed the
SNOTEL Probabilistic-Spatial Quality Control (PSQC)
System, is described below.

2.2. Overview of the SNOTEL PSQC System

The PSQC system for SNOTEL is spatially-oriented,
uses a knowledge-based system to make predictions,
and ingests a variety of spatial data sets (Daly et al.
2004, Gibson et al. 2004). It operates on the premise
that spatial consistency, if assessed accurately, is a
useful indicator of data validity. A climate estimate is
made at a station location when the station’s data value
is withheld from the interpolation. If there is a large
discrepancy between the station value and the estimate
at the station’s location, and the ability of the system to
judge data quality is accounted for, the probability of the
observation being correct may be low. The goal of the
QC process is to, through a series of iterations,
gradually and systematically “weed out” spatially
inconsistent observations from consistent ones. This
process is necessarily an iterative one, because the
validity of an observation is assessed through
surrounding observations, which themselves may be in
error.

The predictive tools are based on PRISM
(Parameter-elevation Regressions on Independent
Slopes Model), a knowledge-based climate mapping
system developed at Oregon State University (Daly et
al., 1994, 2002, 2003). PRISM provides a relatively
high degree of skill to the spatial interpolation process,
especially in complex regions.

Experience has shown that higher interpolation skill
for daily temperature is obtained by running PRISM
using a high-quality predictive, or “background,” grid that
represents the long-term climatological temperature for
that day or month, rather than a digital elevation grid.
Such background grids have the expected spatial
patterns of climatological temperature built in to provide
increased explanatory power. This is sometimes
referred to as climatologically aided interpolation (CAl).

Under USDA-NRCS funding, work is underway at
SCAS to produce new 1971-2000 monthly average
minimum and maximum temperature grids at 30-sec
(0.8-km) resolution for the United States (Doggett et al.,
(2004). The 0.8-km grid cell size captures a good deal
of the topographic variability in mountainous regions.
Initial drafts of these grids are being used as the
predictive grids for the PRISM PSQC system. Figure 1
is an example of a PRISM regression function, showing
a local regression between observed maximum
temperatures for 20 July 2000 and their 1971-2000
climatological mean values for the month of July. Over
long periods, the slope of this linear regression function
should average out to approximately 1.0, but may vary
appreciably during individual days. As discussed in

Section 1.2, further interpolation improvements could be
realized by employing gridded climatologies targeted to
a specific type of weather pattern.

An extensive array of spatial information interacts
with the PRISM knowledge base to weight stations
entering the regression function. These include grids of
elevation, topographic facets (at six different scales),
coastal proximity, inversion height, topographic index,
and effective terrain height (see Daly et al. 2002 for
details).

2.3. The PSQC Process

The QC process consists of two nested loops: a
daily loop inside an iterative loop (Figure 2). In the daily
loop, PRISM is run for each station location for each day
within the period of record, and summary statistics
accumulated. Once all days have been run, confidence
probabilities (CP) for each daily station observation are
estimated (discussed below). In the outer CP iteration
loop, these CP values are used to weight the daily
observations in a second series of PRISM daily runs.
Observations (O) that have lower CP values are given
lower weight, and thus have less influence, in the
second set of PRISM estimates, and are also given
lower weight in the calculation of the second set of
summary statistics. CP values are again calculated and
passed back to the daily PRISM runs. This iterative
process continues until the change in CP values
between the present and previous iterations falls below
a threshold “equilibrium” level, at which time the process
stops and summary QC information is produced. The
number of iterations required to reach equilibrium
typically ranges from one to five.

Variables calculated during the QC process are
listed in Table 1. They fall into three main categories:
(1) PRISM variables, (2) summary statistics, and (3)
probability statistics. During the daily loop, PRISM is
run in point mode to obtain an estimate, referred to here
as a “prediction,” P, for each station location for each
day. First, a prediction is made for the target station in
its absence, using all available observations from
surrounding stations for the PRISM regression function
(Figure 1),. The process is then repeated several times
while deleting nearby observations, first singly, then in
pairs, with replacement. The cycles of deletion are
performed to preclude highly erroneous observations
from contaminating the predictions. It is assumed that
the chances of more than two erroneous observations
occurring in the immediate vicinity of each other on a
given day are small. The residual, R, (R = P - O) and
the PRISM regression standard deviation, S, are
calculated and summed to obtain a score for each
station deletion scenario. The scenario that produces
the lowest score is accepted, the associated values of
P, R, and S recorded for that day, and the deleted
observations replaced in the data set. T and V, the
temporal variability statistics, are also calculated for
each day. These are discussed as improvements to the
PSQC system in Sections 2.5.1 and 2.5.4.

Daily values for the PRISM variables are
accumulated in a database, and summary statistics for



these variables are calculated for each day of each year
(Table 1; Figure 2). A 31-day moving window, centered
on the target day, within a five-year moving window,
centered on the target year (N=155), is used to calculate
localized “long-term” means and standard deviations of

0(0,s,), P(P,s,),R(R,s,) S(S,s,) andV

(V,SV ). For example, summary statistics for July 15,

1995 are accumulated from all non-missing days within
the period July 1-30, 1993-1997. The 30-day and 5-
year windows were thought to represent a good
compromise between including enough days to produce
a stable mean and standard deviation, but not so many
as to dilute seasonal and inter-annual trends in spatial
climate patterns and nearby station availability. Multiple
years were required to allow the identification of periods
of bad SNOTEL observations that sometimes persisted
unnoticed for many months or longer in these remote,
automated systems.

Once the summary statistics are calculated for each
day of the year, each daily observation, prediction,
residual, and standard deviation is compared to its
“long-term” mean and standard deviation with a t-test,
and a p-value is calculated. The p-value estimates the
(two-tailed) proportion of observations that can be
expected to fall at least as far away from the mean as
the daily value (Figure 3). The daily p-values for
observation, prediction, residual, and standard deviation
are multiplied by 100 to express them as percentages,
and are denoted OP, PP, RP, and SP, respectively. In
addition, an overall confidence probability for the
observation, CP, is calculated from these probability
statistics (discussed below).

Of particular importance is RP, the residual
probability, because it has the most relevance to the
consistency, and hence validity, of the observation. RP
is a measure of the relative success of the model
prediction in approximating the observation. A low
residual probability indicates that PRISM is having an
unusually difficult time predicting for a station on a
particular day. RP implicitly accounts for the overall
ability of PRISM to predict for a daily station
observation; if the residual for that time of year is highly
variable, with many large values, the standard deviation
of the distribution of R will be large, and RP will be

accordingly larger for a given deviation of R from R (see
Figure 3). The overall confidence probability, CP, is
currently set to the value of RP.

The QC system also uses a similar probabilistic
approach to assessing whether potential flatliners are
caused by data errors (see Section 2.5.1).

2.4. Dissemination of Results

Integral to the SNOTEL PSQC system is a Web
interface that provides developers and users alike with
the capability to plot, list, and generally explore the
observations and QC results. Station locations and
metadata can be found through an Internet mapserver,
and plots and tables are constructed and viewed with
PHP-based applications. The interface has both basic
and advanced views. The advanced view gives users

access to dozens of variables produced by the QC
system, with time series, scatterplot, and histogram
plotting capabilities. The basic view limits and simplifies
plotting and display choices to those expected to be
used by more casual users. An example plot from the
Web interface is shown in Figure 4.

The download section of the interface is devoted to
the access and delivery of QC’ed data to users. Users
can choose to download data from one or more stations
within a given period of record. Blending of observed
and predicted values into the downloaded data set is
possible by specifying upper and lower thresholds for
acceptable CP values; an upper CP threshold defines
the CP value above which observations are accepted
as-is, and a lower CP threshold defines the CP value
below which predictions should be used instead of the
observations. Between the upper and lower thresholds,
the observations are blended with the predictions with a
linear weighting scheme that weights the observations
more highly as the CP value increases from the lower to
the upper threshold. The upper and lower default
settings of these CP thresholds are currently set to 30
and 10, respectively based on internal evaluation of the
QC system, but may be changed to alternate values by
the user.

Data are downloaded in a final results table for each
station that has a header indicating the station ID, table
creation date, period covered, etc. In the data portion of
the table, each daily record includes the following:

e STNID: Station ID

e DT: Date

e  O: Observation value

e PREDICTED: PRISM predicted value

e CP: Observation confidence (CP). 100= Highest
confidence, O=lowest confidence (or missing).

e FINAL: Final QC’ed value (with blending if
specified)

e CPMAX: CP value below which the FINAL value is
a blend between the observation and the predicted
value. At CPMAX, the observation receives full
weight.

e CPMIN: CP value at which the predicted value

receives full weight.

RSD: Standard deviation of the residual distribution

MAE: Mean absolute prediction error

SIGMA: Standard deviation used to determine CP

COUNT: Number of obs used in determining CP

FLAG: Pre-processing flags

This simple record provides the user with vital
information about the observation, as well as the QC
system used to assess its validity. If needed, additional
information about an observation can be obtained from
the Web interface.

2.5. Improvements to the System

The SNOTEL QC system uses the PRISM climate
mapping system, a knowledge-based system that has
been continually improved and updated since its



conception in 1991. Major challenges faced in
improving PRISM or any other spatial model include: (1)
identifying what data are not available to PRISM by
asking the question: “what additional information do |
have to be able to say that PRISM has made an error?”;
(2) finding viable ways to make this information
available to PRISM in a reliable and usable format; and
3) developing algorithms that transform this
information into decisions and calculations that help
create better spatial predictions in a variety of situations.

Although it is relatively new, the SNOTEL PSQC
system itself has already undergone a number of
changes that make the system better simulate how a
human being would QC an observation. In the end, we
are the best judge of performance, and a system that
mimics our thought process is most likely to succeed.

Some examples of improvement through feedback
follow. There will undoubtedly be many more changes
made to the QC system as experience is gained through
continued use and development.

2.5.1. Flatliners

In the US, it is difficult to find a realistic example of the
same exact maximum or minimum temperature
persisting for ten days or more; these are nearly always
caused by erroneous data. Flatliners persisting for no
more than 5 days occur fairly often. However, flatliners
that persist for less than 10 days but more than 5 days
are more difficult to assess. In the PSQC system, the
assessment of these “potential flatliners” was not
handled well by solely evaluating the difference between
the prediction and observation, because sometimes the
value of the flatliner was a reasonable one. The human
expert usually assesses a potential flatliner by
comparing the station’s temperature variability to that of
the surrounding stations; if all are relatively constant, the
potential flatliner is considered real. If not, the data are
considered suspicious. This information was provided
to the QC system in the form of the variability ratio, V=
log10(To I Ts), where T, is the 5-day running standard
deviation of the station’s daily values and Ts is the
average 5-day running standard deviation of the
surrounding stations (see Table 1). Statistics of this
ratio over the summary period (15 days and +2 years)
were accumulated, and statistical distributions
developed, as was done for the residuals. Then, a p-
value for the variability ratio for each potential flatliner
period was determined to form a VP (variability
probability) value. For potential flatliners with 5-9
persistent observations, the final CP value was then
taken as the minimum of RP and VP.

2.5.2 Accounting for bias in R

As discussed above, in non-flatline situations, RP is
used to approximate CP. In the calculation of RP,

R and §,.are the operative mean and standard

deviation. R may show a tendency for bias over the
“long-term” period. If the mean is biased 1 or 2 degrees

from zero, a daily R of zero (perfect prediction) would be
1 or 2 degrees from the mean, and receive a relatively
low RP value, which seems counterintuitive; perhaps a
nearby station which was causing the long-term
prediction bias is missing that day. Therefore, the

difference between R and Eis now calculated as the

minimum of the difference between R and E and R and
Zero.

2.5.3. A more liberal substitute for s,

The RP value for a daily observation is largely
dependent on s, , which characterizes the variability in

the distribution of R. If §,.is very small, low RP values
can result for relatively small differences between R and

R. §,.tends to be small for a number of reasons,

including the fact that a “best” prediction, which tries to
match the observation, is used in the calculation of

S, (see Section 2.3 for details). A more robust

calculation of distribution variability was implemented,
which calculates a new standard deviation as the

maximum of s, S, gand 2°C. Sand grepresent the

daily and average standard deviation of the PRISM
regression function, and can be thought of as the
“prediction precision.” A 2°C minimum represents the
practical notion that distributions with standard
deviations less than about 2°C are “splitting hairs,” and
would be considered too narrow when evaluated by an
expert QC operator.

This is an excellent example of the QC system

learning and improving, based on subjective
interpretation of the results. In an ideal situation, the
2°C threshold, or something similar, should be

calculated by the system. It may be possible to do so
by calculating the distribution of differences between
observations from stations with known data quality in
close proximity, but there are many factors to consider,
including station siting and configuration, sensor type,
and difference in the timing of meteorological events. In
the end, even the most “objective” QC system must be
subjectively parameterized to produce what is perceived
as optimal performance.

2.5.4. Inconsistent observation times

A difficulty in performing spatial QC on a daily time
step is dealing with differences in observation time.
While this is not typically an issue for automated
observing systems (00-24 being standard), spatial QC
of these systems requires that all surrounding stations
be QC’ed as well. National Weather Service COOP
stations have observation times which vary from station
to station, and when processing inconsistencies are
considered, may produce time shifts of +/- 2 days. The
problem is most serious when there are large daily
temperature variations. The QC system, considering
each day in isolation, was assigning relatively low CP



values to observations in situations where temperature
changes were out of phase due to time shifting, despite
the fact that the observations were otherwise correct.
This was remedied by using Ts the average 5-day
running standard deviation of the surrounding stations
(discussed in Section 2.5.1), as a measure of the day-
to-day variability in temperature. If the variability was
high, it would be necessary to widen the distribution of R
to accommodate the possibility that time shifting was
occurring.  This became yet another term in the
calculation of the standard deviation used to determine
the p-value, and hence, CP. Now, the new standard

deviation was calculated as the maximum of s, S, §
2°C,and Ts.

3. SUMMARY AND QUESTIONS TO CONSIDER

The methods by which climate data are being
collected and used are expanding rapidly. Increasingly,
data are being collected by automated electronic
systems, with a wider variety of platforms, at higher
temporal resolution, at more locations, and in more
difficult and remote environments.  This shift in
observational strategy is largely the result of
technological advances that have increased both the
supply of, as well as demand for, climate data. Some of
these same technological advances now provide
opportunities for qualitatively different approaches to
quality control, methods that are sophisticated, largely
automated, data-rich, updatable, and capable of
furnishing quantitative error and confidence information.
This paper explores some of the characteristics of such
methods, and discusses why they are both beneficial
and practical. These are summarized below:

e Data-rich QC frameworks. Automated data
collection systems are often used to monitor
difficult, often mountainous environments far from
permanent human habitation. Intelligently
assessing the quality of the data collected in such
environments is difficult, and requires a
sophisticated, data-rich QC system that can
account for factors controlling the spatial and
temporal patterns of climate in the area. Data that
could be used to improve a QC system are
numerous and varied. Four types were discussed:
(1) in situ observations; (2) satellite and radar data;
(3) diagnostic climatological grids interpolated from
observations; and (4) values and QC results from
other observed variables.

e Continuous, quantitative estimates of observation
validity and estimation uncertainty. There is much
benefit in estimates of observational validity and
estimation uncertainty that are quantitative and
continuous, rather than categorical. For example,
errors from electronic measurement systems can
suffer from continuous drift (i.e., calibration issues)
as well categorical mistakes (e.g., using an

incorrect algorithm to convert voltage to
temperature). In addition, computer models that
rely on climate observations as input benefit from
quantitative estimates of uncertainty. Providing
such quantitative uncertainties requires that the
statistical performance of a QC system be known,
and incorporated into the results.

e Transparent dissemination of results that allow end-
user_interaction, education, and decision-making.
The range of applications for climate data is rapidly
increasing, and each application has a different
tolerance for low-confidence data points. In
addition, users need to be informed about how the
QC system arrived at its conclusion, so they can
make better choices about how the data should be
used. A new approach is required, where full
quantitative information is presented to the user in a
transparent, interactive format. Full disclosure
allows users to make intelligent decisions about the
QC results and an interactive system allows users
to generate their own data sets, based on
suggested default thresholds for data inclusion, or
their own thresholds.

e Automated QC systems that improve through
experience and feedback. Data generated by
automated electronic systems are often more
voluminous (e.g., shorter time step) and
disseminated in a much more timely manner than
those from manual systems. Whether operating on
near-real time data, historical data, or both,
automated QC systems are needed. This does not
mean that humans should be excluded from the QC
process. Experts are needed to parameterize the
system (often done subjectively), provide feedback,
and make updates and improvements to the
automated system. In order for QC systems to be
optimally effective, climate data QC must be
designed as an ongoing process of improvement,
not a one-time assessment. In this way, the
expectation will be that QC systems can and will be
improved, and will be re-applied retrospectively on
a periodic basis to reflect these improvements.

The first generation of a spatial QC system recently
developed for USDA-NRCS SNOTEL temperature data,
called the SNOTEL Probabilistic-Spatial Quality Control
(PSQC) System, was presented as an example of a
system that is in the early stages of incorporating these
characteristics. The SNOTEL PSQC System is
spatially-oriented, uses a knowledge-based system
(PRISM) to make predictions, and ingests a variety of
spatial data sets. It operates on the premise that spatial
consistency, if assessed accurately, is a useful indicator
of data validity. Continuous, quantitative estimates of
observation validity and prediction uncertainty are made
by evaluating the statistical performance of the system.
Results are provided via a Web interface that allows
users to make intelligent decisions about the QC results
and generate their own data sets, if desired. The



system is automated, and is being upgraded through
feedback from users and developers.

The development of this QC system has raised a
number of issues. Examples of some of the issues and
questions we are currently considering include:

e By using a probabilistic approach, the SNOTEL
PSQC System accounts for PRISM’s ability to
predict in a station’s absence. But unusual
situations occur in which the observation appears to
be valid, but also spatially inconsistent. How can
information about these unusual situations be
incorporated into the QC system’s knowledge
base? More broadly, is there a limit to how far one
can take the assumption that spatial inconsistency
equates with validity?

e Spatial QC depends on “long-term” information on
the ability of PRISM to predict in a station’s

absence. This ability can be affected by the
presence or absence of nearby station
observations. How do we account for

intermittencies in station reporting, especially if we
are to operate the system in near real-time, where
observations are often missing?

e Non-spatial validity tests have also been
incorporated into the SNOTEL PSQC system. For
example, the probability of a station “flat-lining”
(having the same observation repeated) for a
specified period of days is now calculated and
subjected to the same p-value calculation. Are
there other non-spatial checks that could be made
and assessed probabilistically? Perhaps the
tendency for errors in electronic measuring systems
to occur in persistent temporal blocks could be
utilized.

e Continuous and probabilistc QC systems are
beneficial for assessing the quality of data from
electronic observing systems. Are they also useful
and beneficial for manual observing systems?
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Table 1. Variables calculated by the SNOTEL PSQC system.

Abbreviation Description Notes
PRISM Variables
0 Observation Observed station value on a given day
P Prediction “Best” PRISM spatial prediction for a station, on a
given day, that most closely matches the
observation after systematic deletion of
surrounding stations, individually and in pairs
R Residual (P-O) Difference between the prediction and the
observation for a station on a given day
S Regression standard Standard deviation of the PRISM regression
deviation function for a station on a given day
To Temporal variability 5-day running standard deviation of O; represents
of station the local day-to-day variability of O
Ts Temporal variability Average 5-day running standard deviation of O for
of surrounding the 10 surrounding stations, weighted by PRISM
stations calculated weights; represents the local day-to-day
variability of observations from surrounding
stations
v Variability ratio Ratio of the station’s T, to that of the surrounding

stations’ T, calculated as log1o(To / Ts)

Summary Statistics

Mean and standard deviation of the observation for

O.s “Long-term” mean
>To and standard a given day of the year, calculated as the mean of
deviation of observations for a station centered on the current
observation day, +15 days and + 2 years
ﬁ s “Long-term” mean Same as above, except for prediction
>Tp and standard
deviation of
prediction
R s “Long-term” mean Same as above, except for residual
> and standard
deviation of residual
§ s “Long-term” mean Same as above, except for regression standard
> and standard deviation
deviation of
regression standard
deviation
I7 s “Long-term” mean Same as above, except for variability ratio
&y

and standard
deviation of
variability ratio

Probability Statistics

OP Observation P-value*100 from a t-test comparing O to the
probability O.s
distribution of O, parameterized by ~ > "¢
Represents the percent of observations within
0-0 of the mean. Measure of how unusual the
observation is compared to others at this station at
the same time of year
PP Prediction probability Same as above, except for prediction
RP Residual probability Same as above, except for residual
SP Standard deviation Same as above, except for regression standard
probability deviation
VP Variability Probability Same as above, except for variability ratio
CP Overall confidence Overall confidence probability for the station

probability

observation on a given day. Currently, CP=RP
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Figure 1. Scatterplot and PRISM regression line for 20 July 2000 maximum temperature and 1971-2000 mean
July maximum temperature for the location of the Mt. Hood Test Site SNOTEL station (21D12S) in the Cascades
Mountains south of Mt. Hood, Oregon. Cross network --- Size of circles represents a station’s relative weight in the
regression function. Note that data from three difference networks are employed in the regression function: SNOTEL
(6-character alpha-numeric ID), COOP (6-digit ID), and RAWS (8-character alpha-numeric ID).
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Figure 2. SNOTEL PSQC process flow. Within the inner daily loop, PRISM is run for each station-day in the
absence of the observation (O), producing a prediction (P), residual (R=P-O), standard deviation of the PRISM
regression function (S), and temporal variability statistics (T and V). Summary statistics, including mean and
standard deviation, of P, O, R, S, and V for a 31-day, 5-year moving window around each day are accumulated. (The
calculation of summary statistics is weighted by the confidence probabilities (CP) of the station observations assigned
in the previous iteration.) Once all desired days are run, the process moves to the outer iterative loop. Here, each
station-day’s P, O, R, S, and V are compared to their statistical distributions for that day, and p-values for each
calculated using a t-test, giving PP, OP, RP, SP, and VP, respectively. CP is set to the value of RP, except in cases
of potential flatliners, where it is set to the minimum of RP and VP (see Section 2.5.1 for details on flatliners). If the
current iteration’s CP values are similar to those from the previous iteration, the process stops. If not, the CP value of
each station observation is updated in the station listing, and PRISM weights the station observation accordingly in
the next daily interpolation loop. In this way, observations with lower confidence (CP) have less influence on the
subsequent PRISM predictions and summary statistics. The outer CP iteration loop is typically run 1-5 times before
all station-days reach equilibrium.
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Figure 3. Two-tailed p-values (shaded areas) for a daily residual (R) its mean ( R ), and standard deviation (S,)
for: (a) a distribution with a large S, , representing a wide distribution of differences between the PRISM prediction

and the observation, indicating relatively poor predictive performance; and (b) a distribution with a small Sr ,

representing a narrow distribution of differences between the PRISM prediction and the observation, indicating
relatively good predictive performance. Note that when the predictive performance is poor, the resulting RP (two-

tailed p-value for R) is greater for the same daily deviation from R than when the predictive performance is good.
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Figure 4. Example plot from the SNOTEL PSQC Web interface, showing erroneous maximum temperature
observations at the Salt Creek Falls, Oregon SNOTEL site (22F04) over a two-week period in July 2000 (red line).

Maximum temperatures are plotted as deviations from O , the +15 day, +2 year average. Errors at this station
persisted all summer before being remedied in the fall.



